Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120.
نویسندگان
چکیده
Global transcriptional responses to dehydration and rehydration were determined in Anabaena sp. PCC 7120. Nearly 300 genes were up- or downregulated during both dehydration and rehydration. While as many as 133 genes showed dehydration-specific downregulation, only 29 genes showed dehydration-specific upregulation. In contrast, while only 13 genes showed rehydration-specific downregulation, as many as 259 genes showed rehydration-specific upregulation. The genes upregulated during rehydration responded rapidly and transiently, whereas those upregulated during dehydration did so gradually and persistently. The expression of various genes involved in DNA repair, protein folding and NAD synthesis, as well as genes responding to nitrogen depletion and CO2 limitation, was upregulated during rehydration. Although no genes for transcriptional regulators showed dehydration-specific upregulation, eight showed rehydration-specific upregulation. Among them, two genes, ancrpB and alr0618, encode putative transcriptional activators of the cAMP receptor protein (CRP) family. DNA microarray analysis using gene disruptants revealed that AnCrpB and Alr0618 regulate the genes induced by nitrogen depletion and by CO2 limitation, respectively. We conclude that rehydration is a complex process in which the expression of certain genes, particularly those for metabolism, is dramatically induced.
منابع مشابه
Anabaena sp. strain PCC 7120 responds to nitrogen deprivation with a cascade-like sequence of transcriptional activations.
Anabaena sp. strain PCC 7120 adapts to deprivation of fixed nitrogen by undergoing physiological and genetic changes that include formation of N2-fixing heterocysts. Whether or not certain of the genes involved are interdependently expressed has been studied.
متن کاملAll4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120.
All4312, encoded by open reading frame all4312 in the genome of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, exhibits a CheY-like receiver domain and an output domain similar to that of OmpR, characteristic of two-component response regulators. Expression of all4312 was directly regulated by NtcA, the global transcriptional regulator of nitrogen assimilation in cyanobacte...
متن کاملCalcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evalua...
متن کاملPlmA, a new member of the GntR family, has plasmid maintenance functions in Anabaena sp. strain PCC 7120.
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 maintains a genome that is divided into a 6.4-Mb chromosome, three large plasmids of more that 100 kb, two medium-sized plasmids of 55 and 40 kb, and a 5.5-kb plasmid. Plasmid copy number can be dynamic in some cyanobacterial species, and the genes that regulate this process have not been characterized. Here we show that mutat...
متن کاملCell Surface-Associated Proteins in the Filamentous Cyanobacterium Anabaena sp. strain PCC 7120
The cell surface senses environmental changes first and transfers signals into the cell. To understand the response to environmental changes, it is necessary to analyze cell surface components, particularly cell surface-associated proteins. We therefore investigated cell surface-associated proteins from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The cell surface-associated pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 153 Pt 11 شماره
صفحات -
تاریخ انتشار 2007